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FOREWORD 
A traditional approach to fault diagnosis is based on “hardware (or 

physical/parallel) redundancy” methods which use multiple lanes of sensors, actuators, 
computers and software to measure and/or control a particular variable. Typically, a 
voting scheme is applied to the hardware redundant system to decide if and when a fault 
has occurred and its likely location amongst redundant system components. The use of 
multiple redundancies in this way is common, for example with digital fly-by-wire flight 
control systems e.g. the AIRBUS 320 and its derivatives and in other applications as in 
nuclear reactors. In general, one needs many more sensors and also non-robust sensors in 
hardware redundancy methods. This may become expensive and more sensitive to 
sensor-based faults. In contrast, model-based fault detection methods need only some few 
and possibly robust sensors. Model-based fault detection can provide direct insight into 
dynamic properties such as the transient response. A fault usually causes changes in 
several output variables with different signs and dynamics. The model-based fault 
detection takes into account all these entailed changes, provides a data reduction and 
determines theoretically the state variable which has been changed directly by the fault. 
Hence, it can be expected that a significant change in the state variable can be extracted 
and that the fault detection selectivity is improved. 

Compressing computational time to reasonable limits remains a challenge facing 
both damage interrogation and prognostic modeling. Another key challenge to field 
deployment of a robust structural health monitoring system is data normalization. System 
response data is usually measured under varying operational and environmental 
conditions and without appropriate data normalization procedures changes in the 
measured response caused by operational and environmental conditions may be mistaken 
for changes caused by the damage process. These challenges are addressed through a 
multi-disciplinary approach that incorporates elements from engineering mechanics, 
mathematical and computational analysis, probability, and computer science. 
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PROBLEM STATEMENT AND APPROACH 
The primary objective is to develop a model-based diagnostic and prognostic 

framework for system-level health management. A strategy modeled on the following 
three-stage approach has been adopted in this work:  

1. Quantifying the degree of existing damage.  
2. Constitutive modeling of progressive damage. 
3. Diagnosing the response of the structure to evaluate the progression of 

damage over time and develop a prognosis system given knowledge of the 
damage history. 

 
Quantifying the degree of existing damage 

Fault detection is formulated as an optimization problem; it is essentially an 
inverse multi-modal problem, usually a large number of local optima exist and the 
traditional gradient-based techniques may result in a trapped local optimum. A stochastic 
global search method based on the genetic algorithm is adopted to search the optimal 
solution. An improved laminate theory incorporating a layerwise deformation field is 
used to model material behavior. An artificial neural network is trained to simulate results 
from the finite element analysis. The artificial neural network is effectively doing 
function approximation which is used to associate parameterized descriptions of a given 
set of damage patterns with their corresponding signatures. 

 
Constitutive modeling of progressive damage 

Progressive damage analysis of laminated composites is performed using a 
micromechanical model. A state variable constitutive formulation for characterizing the 
nonlinear, strain rate dependent deformation of polymeric materials has been modified in 
order to accurately account for the effects of damage on their mechanical behavior. The 
revised polymer constitutive equations have been incorporated into a classical solid 
mechanics based micromechanics model to predict damage and the consistent reduction 
of effective composite properties during the various phases of its evolution in time. A 
finite element program based on a refined layerwise theory is used in the laminate 
analysis. A macro-micro approach is used to relate the lamina stresses predicted by the 
global laminate analysis to the micromechanical stresses in each constituent of the 
composite. 

 
Diagnosis and prognosis 

The approach adopted emphasizes damage diagnostics as a prelude to developing 
reliable damage prognosis solutions. Damage diagnosis or interrogation is treated as a 
two-step process. First, some observable variable of the system is traced through time 
from a specific initial state. It is crucial that changes in this variable reflect changes in the 
damage distribution in the structure. The previously discussed macro-micro finite 
element analysis program is used to generate sample data for the inverse mapping 
between structural degradation and the transient response under a given load. The 
dynamics of the degradation process can then be approximated with a nonlinear 
autoregressive system. Static mappers have long-term memory, since the information 
utilized during system training is converted into weight values using the learning rules. 
They contain a repository of past information that is associated with memory. However, 



they are unable to differentiate time relationships, because the information collected 
through time is collapsed in the weight values. In temporal problems, such as the 
simulation of progressive damage, the measurements from the world are no longer an 
independent set of input samples, but functions of time. In temporal phenomena, time 
imposes a structure in the input space, in other words, the sequence in which the points 
are visited is important. Time is represented implicitly by its effects on processing rather 
than explicitly (as in a spatial representation). This involves the use of internal network 
feedbacks or recurrent links in order to provide networks with a dynamic memory. 

 
SUMMARY OF IMPORTANT RESULTS 

Quantifying the degree of existing damage 
In this section a comparison is made between the developed model and known 

solutions to problems. A six-ply orthotropic laminate with [90/0/90]2s stacking sequence 
and dimensions 6 x 20 x 0.0127 cm was used. Cantilever boundary conditions are used. 
The orthotropic material properties used were: 
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Only rectangular delaminations were considered. Two different types of delaminations – 
through-the-width and seeded, are considered in the current study. The direct problem is 
computed on a finite element grid consisting of 147 nodes and 120 quadrilateral plate 
elements. Due to the symmetry of the lay-up with respect to the laminate mid-plane, only 
damage occurring in the upper half of the laminate is considered. The position of the 
damage zone is varied along the length, width, and depth of the plate; from the fixed end 
to the free end along the length, edge to edge along the width, and mid-plane to slightly 
below the top surface along the depth. Finite element analysis is used to estimate the 
damage indices evolving from all the different damage patterns. The training data 
consists of parameterized descriptions of individual damage patterns with their 
corresponding damage index signatures. 

The data prepared were divided into training, cross validation and testing sets. 
The training set is used to adjust the network weights i.e., to teach the network. When the 
trained model is utilized for new inputs never encountered before, it will produce for each 
input a response based on the parameters obtained during training. If the new data comes 
from the same set, that is, the training set, the response should resemble the value of the 
desired response for that particular input value, that is, the model should have the ability 
to extrapolate responses for new/unseen data. This is an important feature, since in 
general it is desirable that the performance obtained in the training set also applies or 
generalizes to the new/unseen data when the model is deployed. The test set used to 
verify the model performance consists of a combination of data from the training set and 
new/unseen data not used for training but for which the desired response (damage index 
distribution) is still known. 

Traditional knowledge from data modeling and recent developments in learning 
theory (Vapnik, 1995) clearly indicate that after a critical point a network trained with 
backpropagation will continue to do better in the training set, but the test set performance 
will begin to deteriorate - the learning algorithm over-fits the training data. This 
phenomenon is called overtraining. The current framework circumvents this problem by 
stopping the training at the point of maximum generalization (given the present data and 



the architecture of the network). This is called early stopping, or stopping with cross-
validation. The cross-validation set is normally taken as 10 percent of the total training 
samples. At regular intervals (i.e., 5 to 10 iterations), the network performance with the 
present weights is tested against the cross-validation set. Training should be stopped 
when the error in the cross-validation set starts to increase. This point is the point of 
maximum generalization or the point of the smallest error in the cross-validation set. 
 

 
Figure 1 Generalization 

 
The investigation was made with a three-layer network; the structure of the 

network is expressed as 1 2
p m− − −n S S n , where pn  is the dimension of the input space, 

1S , 2S  are the number of PEs in the first and second hidden layers, and mn  is the higher 
(finite or even infinite) dimensional “feature space” in which the patterns become 
separable, in this case, the number of points in the damage index distribution used to 
detect the delamination. The choice of number of units for the input and output layers is a 
function of the representation; the choice for the hidden layers is determined heuristically 
– 70 and 2100 PEs were found to be adequate for the first and second hidden layers, 
respectively. 

As a first step, the network was trained to simulate the response to through-the-
width delamination; it was trained with 294 data sets, which included both descriptions of 
through-the-width delaminations and the corresponding damage index distributions. The 
network output fitted the simulation results with a mean square error of 0.00001. The 
multi-layered network was found to converge in a relatively small number of iterations. 
However, each iteration took considerable time because of the relatively large number 
(70 and 2100, in this particular case) of hidden PEs required for the training. The 
resulting trained network was, however, found to fit the simulations quite well, with a 
relative mean error of 0.5%, which is acceptable for the current problem. 

The genetic algorithm (GA) was customized for detecting through-the-width 
delaminations. This GA consists of a selection operator, two genetic operators (crossover 
or recombination and mutation) with associated probabilities, and a termination criterion. 
In addition, an elitist strategy (De Jong, 1975), in which the best individual found 
survives and is selected by the next generation, was adopted in this tailored version. In 
the present numerical simulations, the selection technique employed a “tournament 
selection” (Goldberg and Deb, 1991) mechanism, in which a set of three individuals is 
picked at random and the best individual in this set is then selected by the mating group. 
The basic operator for producing new individuals in the GA is that of crossover with a 
probability of 0.6. Uniform mutation, with a probability of 0.4, is applied. Typically, a 



population was composed of 80 individuals and the GA was set to terminate after 1000 
generations, a number that was determined by judicious use of heuristic cues. However, 
the algorithm is terminated early if it converges to a satisfactory solution before 1000 
generations. Seventeen delamination patterns were considered and the results are listed in 
Table 1. The delamination patterns chosen to verify the neural network performance in 
this case represent the smallest possible through-the-width damage that can be modeled 
in this particular FE mesh (20x6) chosen to model the cantilever plate. Their damage 
index distributions were predicted using a well-trained neural network. The actual 
delamination pattern corresponding to a given damage index distribution and the GA-
predicted delamination pattern are listed in Table 1. 

The problem of detecting seeded delaminations is made complicated by the fact 
that a total of five parameters (shown in Fig 2) are required to describe the delamination, 
as opposed to three in the case of through-the-width delaminations. The network was 
trained with 98 data sets for each value of dz . Since there are three permissible values 
of dz  (0, 1, and 2), there were totally 294 training data sets generated using finite element 
analysis. 

 

 
Figure 2 Input-space representations of through-the-width and seeded damage, 
respectively. 

 
Two different approaches were experimented with in the construction of the 

neural network model. The first approach was similar to that used for though-the-width 
delaminations in which a single network was constructed. However, the input vector has 
five parameters describing the delamination. The validation error of this model was much 
larger than 0.5%, which was the relative mean error of the model for the through-the- 
width delamination problem. It was found that a single network model working in 
conjunction with GA was not able to locate and describe seeded delaminations accurately. 
It is noted that although both models employed an identical number of training sets (294), 
the accuracy of the model simulating seeded delaminations is much lower since the 
problem is more complicated with a higher number of descriptive parameters involved. 
 
 
 
 
 



Table 1.  
Detecting through-the-width delaminations with current technique. 

Case 
Actual delamination pattern  

[ ]d 1 2 actual
z , x , x  

Predicted delamination pattern 
[ ]d 1 2 predicted
z , x , x  

1 [0, 5.0, 7.0] [0, 4.99, 7.02] 
2 [0, 8.0, 10.0] [0, 8.01, 9.98] 
3 [0, 11.0, 13.0] [0, 10.98, 13.01] 
4 [0, 14.0, 16.0] [0, 14.03, 16.04] 
5 [0, 17.0, 19.0] [0, 16.97, 18.98] 
6 [1, 2.0, 4.0] [1, 2.02, 3.98] 
7 [1, 5.0, 7.0] [1, 5.01, 6.99] 
8 [1, 8.0, 10.0] [1, 7.99, 10.02] 
9 [1, 11.0, 13.0] [1, 10.97, 12.98] 

10 [1, 14.0, 16.0] [1, 14.01, 15.98] 
11 [1, 17.0, 19.0] [1, 16.95, 19.04] 
12 [2, 2.0, 4.0] [2, 1.99, 4.01] 
13 [2, 5.0, 7.0] [2, 4.97, 6.97] 
14 [2, 8.0, 10.0] [2, 8.03, 9.98] 
15 [2, 11.0, 13.0] [2, 10.95, 12.98] 
16 [2, 14.0, 16.0] [2, 14.05, 16.04] 
17 [2, 17.0, 19.0] [2, 16.89, 19.05] 

 
Since the first approach was not successful, an alternate approach was developed 

which improved the accuracy of the function approximation. Note that there are only 
three permissible values (0, 1, and 2) for the first input variable zd. Therefore, instead of 
using a single network model, three individual neural network modules were constructed 
in this approach. A neural network module was constructed, using 98 training data sets 
and 75 cross validation data sets, corresponding to each value of dz . Therefore, the input 
vector of each module now consisted of only four real variables [ ]1 1 2 2, x , y ,x , y . The 
validation errors of these three modules are much lower than that of the single neural 
network model.  

As in the previous case, a genetic algorithm was tailored for detecting seeded 
delaminations. This is an elitist GA employing (1) the tournament selection mechanism, 
with a size of three, (2) the one-point crossover operator with a probability of 0.6 and (3) 
the uniform mutation operator with a probability of 0.4. The population was composed of 
80 individuals. The GA iterates around the generational loop until a pre-specified number 
of generations – 1000, in this particular case, and then terminates. 

The developed framework has been used to detect delamination in composite 
plates with delaminations located at various ply interfaces. Studies have been conducted 
for twelve different seeded delamination patterns. The length and the width of the 
delaminations in the test set are limited to 2 cm and 4 cm, respectively (representing 
6.67% of the surface area of the plate). The results are listed in Table 2. The actual 
delamination pattern corresponding to a given damage index distribution and the GA- 
predicted delamination pattern are listed. It is observed that all delamination patterns 
have been identified successfully and precisely using this modular approach. 



Table 2 
Detecting seeded delaminations with current technique. 

Case 
Actual delamination pattern  

[ ]d 1 1 2 2 actual
z , x , y , x , y  

Predicted delamination pattern 
[ ]d 1 1 2 2 predicted
z , x , y , x , y  

1 [0, 2.00, 1.00, 4.00, 5.00] [0, 1.99, 1.01, 4.01, 4.97] 
2 [0, 7.00, 1.00, 9.00, 5.00] [0, 7.02, 1.01, 8.98, 5.03] 
3 [0, 12.00, 1.00, 14.00, 5.00] [0, 11.98, 0.98, 13.98, 4.95] 
4 [0, 17.00, 1.00, 19.00, 5.00] [0, 16.96, 0.97, 19.02, 4.93] 
5 [1, 2.00, 1.00, 4.00, 5.00] [1, 2.01, 0.99, 4.02, 4.99] 
6 [1, 7.00, 1.00, 9.00, 5.00] [1, 7.03, 1.01, 8.98, 5.02] 
7 [1, 12.00, 1.00, 14.00, 5.00] [1, 11.97, 1.02, 14.01, 4.97] 
8 [1, 17.00, 1.00, 19.00, 5.00] [1, 17.05, 0.97, 19.03, 4.93] 
9 [2, 2.00, 1.00, 4.00, 5.00] [2, 2.02, 0.97, 4.01, 4.98] 

10 [2, 7.00, 1.00, 9.00, 5.00] [2, 6.98, 1.01, 9.01, 5.02] 
11 [2, 12.00, 1.00, 14.00, 5.00] [2, 12.04, 1.01, 13.97, 5.02] 
12 [2, 17.00, 1.00, 19.00, 5.00] [2, 16.89, 0.90, 19.05, 4.92] 
 
A similar approach has been improvised for detecting multiple seeded 

delaminations. The representation is a mixed type data structure containing 10 variables 
(shown in Fig 3). Three individual neural network modules were constructed in this 
approach for each delamination. A neural network module was constructed 
corresponding to each value of dz  for each delamination. As before, the input vector of 

each module now consisted of only four real variables d d x y, x , y , ,⎡ ⎤⎣ ⎦a a . The validation 
error for each of these modules was less that 0.3% which is acceptable. 

Numerical studies have been conducted for nine different delamination 
configurations and the results are presented in Table 3. Each of the nine configurations in 
the test set comprises two discrete, but identical (in size) seeded delaminations, both 
located at the same through-the-thickness location. The actual delamination pattern 
corresponding to a given damage index distribution and the GA-predicted description are 
listed. It is observed that all delamination patterns have been identified successfully and 
described accurately using this modular approach. 

The same modular approach may be employed to detect and describe overlapping 
delaminations. The representation is a mixed type data structure containing 10 variables 
(shown in Fig 3). A neural network module was constructed, from a training set where 
the total delamination size varies from 15 to 40% and the delaminations may overlap each 
other by anywhere between 15 to 75%, corresponding to each value of dz  for each 
delamination. Again, the input vector of each module now consisted of only four real 
variables d d x y, x , y , ,⎡⎣ a a ⎤⎦ . The validation error for each of these modules was less than 
0.3% which is acceptable. Studies have been conducted for nine different delamination 
configurations and the actual delamination pattern corresponding to a given damage 
index distribution and the GA-predicted delamination pattern are reported in Table 4. 
Each of the nine configurations in the test set comprises two overlapping, but identical (in 
size) seeded delaminations.  
 



 
Figure 3 Input-space representations of discrete seeded multiple and seeded overlapping 
damage, respectively. 
 
Table 3 
Detecting discrete multiple seeded delaminations with current technique. 

Case 
Actual delamination pattern  

d d d x y actual
z , x , y , ,⎡ ⎤⎣ ⎦a a  

Predicted delamination pattern 

d d d x y predicted
z , x , y , ,⎡ ⎤⎣ ⎦a a  

[0, 12.00, 1.00, 2.00, 4.00] 1 [0, 11.97, 0.98, 1.97, 3.96] 11 [0, 15.00, 1.00, 2.00, 4.00] 2 [0, 14.96, 1.03, 1.96, 4.04] 2
[0, 14.00, 1.00, 2.00, 4.00] 1 [0, 14.03, 0.96, 2.02, 4.02] 12 [0, 17.00, 1.00, 2.00, 4.00] 2 [0, 17.05, 0.96, 2.02, 3.98] 2
[1, 7.00, 1.00, 2.00, 4.00] 1 [1, 7.02, 0.98, 1.97, 4.02] 13 [1, 10.00, 1.00, 2.00, 4.00] 2 [1, 10.02, 0.98, 1.96, 3.97] 2
[1, 12.00, 1.00, 2.00, 4.00] 1 [1, 11.97, 1.03, 2.01, 3.97] 14 [1, 15.00, 1.00, 2.00, 4.00] 2 [1, 14.96, 0.97, 1.98, 4.03] 2
[1, 14.00, 1.00, 2.00, 4.00] 1 [1, 13.95, 1.03, 1.96, 3.97] 15 [1, 17.00, 1.00, 2.00, 4.00] 2 [1, 16.96, 1.01, 2.03, 4.03] 2
[2, 2.00, 1.00, 2.00, 4.00]1 [2, 2.01, 0.97, 2.01, 3.97] 16 [2, 5.00, 1.00, 2.00, 4.00] 2 [2, 5.02, 1.01, 2.01, 4.00] 2
[2, 7.00, 1.00, 2.00, 4.00] 1 [2, 6.98, 0.98, 2.01, 4.03] 17 [2, 10.00, 1.00, 2.00, 4.00] 2 [2, 9.98, 1.02, 1.98, 3.98] 2
[2, 12.00, 1.00, 2.00, 4.00] 1 [2, 12.02, 1.01, 1.96, 4.03] 18 [2, 15.00, 1.00, 2.00, 4.00] 2 [2, 15.04, 1.02, 2.00, 4.03] 2
[2, 14.00, 1.00, 2.00, 4.00] 1 [2, 13.92, 0.96, 1.95, 3.96] 19 [2, 17.00, 1.00, 2.00, 4.00] 2 [2, 16.95, 1.01, 1.95, 3.96] 2

 
The damage index is evaluated at each layer-integration point within each lamina, 

within each element. Thus, training a neural network to associate parameterized 
descriptions of a given set of damage patterns with their corresponding damage index 
signatures in the discrete form is computationally expensive and the resulting trained 
network requires extensive amounts of data to be of any use as a simulation tool. A 
transformation is necessary to cast the data into a form that will allow the network to 
learn, recognize, and reproduce the training data. Such a transformation can be developed 
using the Gaussian kernel. 

 ( )
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Table 4 
Detecting overlapping seeded delaminations with current technique. 

Case 
Actual delamination pattern  

d d d x y actual
z , x , y , ,⎡ ⎤⎣ ⎦a a  

Predicted delamination pattern 

d d d x y predicted
z , x , y , ,⎡ ⎤⎣ ⎦a a  

[0, 12.00, 1.00, 2.00, 4.00] 1 [0, 11.97, 0.98, 1.97, 3.98] 11 [1, 13.00, 1.00, 2.00, 4.00] 2 [1, 13.01, 1.00, 1.98, 3.97] 2
[0, 14.00, 1.00, 2.00, 4.00] 1 [0, 14.02, 0.97, 2.02, 4.02] 12 [1, 15.00, 1.00, 2.00, 4.00] 2 [1, 14.98, 1.01, 2.00, 3.97] 2
[0, 16.00, 1.00, 2.00, 4.00] 1 [0, 16.04, 1.03, 1.98, 4.02] 13 [1, 17.00, 1.00, 2.00, 4.00] 2 [1, 17.02, 0.99, 1.99, 4.00] 2
[2, 2.00, 1.00, 2.00, 4.00] 1 [2, 2.01, 1.01, 1.99, 4.00] 14 [1, 3.00, 1.00, 2.00, 4.00] 2 [1, 2.99, 1.01, 2.01, 4.00] 2
[2, 7.00, 1.00, 2.00, 4.00] 1 [2, 6.99, 0.98, 2.02, 3.97] 15 [1, 8.00, 1.00, 2.00, 4.00] 2 [1, 8.00, 1.01, 2.01, 3.99] 2
[2, 12.00, 1.00, 2.00, 4.00] 1 [2, 12.02, 1.02, 1.98, 3.98] 16 [1, 13.00, 1.00, 2.00, 4.00] 2 [1, 13.01, 1.01, 2.02, 3.98] 2
[2, 14.00, 1.00, 2.00, 4.00] 1 [2, 13.97, 1.02, 1.98, 4.02] 17 [1, 15.00, 1.00, 2.00, 4.00] 2 [1, 15.01, 0.99, 2.01, 4.02] 2
[2, 16.00, 1.00, 2.00, 4.00] 1 [2, 15.98, 0.97, 1.98, 4.01] 18 [1, 17.00, 1.00, 2.00, 4.00] 2 [1, 16.97, 1.00, 2.01, 4.02] 2
[2, 7.00, 1.00, 3.00, 4.00] 1 [2, 7.01, 1.00, 3.01, 4.01] 19 [1, 9.00, 1.00, 3.00, 4.00] 2 [1, 8.99, 0.98, 2.98, 3.98] 2

 
A simple example used in the verification of the approach involves a [0/90]4s 

carbon/epoxy cantilever plate of dimensions: 5 x 20 x 0.2032 cm. The direct problem was 
computed on a finite element grid consisting of 126 nodes and 100 quadrilateral plate 
elements. Due to the symmetry of the lay-up with respect to the laminate mid-plane, only 
damage occurring in the upper half of the laminate was considered. The position of the 
damage zone was varied along the length, width, and depth of the plate; from the fixed 
end to the free end along the length, edge to edge along the width, and mid-plane to 
slightly below the top surface along the depth. The size of the damage zone was varied 
from 10 to 20% for through-the-width damage and 4 to 12% for discrete damage. A total 
of 384 and 3456 distinct patterns were generated with through-the-width and discrete 
damage conditions, respectively. Finite element analysis was used to estimate the damage 
indices that arise from all the different damage patterns. The response surface for the 
damage index (δ ) distribution for any given damage pattern can be obtained by 
computing it for some selected design points in the domain. A Gaussian response surface 
is fitted to these points by minimizing the squared error between the predicted and the 
true value at the selected locations. 95% confidence bounds are approximated for each 
coefficient in the kernel to determine the goodness-of-fit. The response curves for the 
damage index for two sets of training samples, one each for through-the-width and 
seeded delaminations are shown in Figs. 4 and 5, respectively. A decrease in 
computational expense by a factor of a few hundreds (Fig. 6) can be achieved by training 
the network with the transformed data i.e., the kernel coefficients, with the potential for a 
large reduction in data requirements of the trained network within an SHM framework 



that may include fault diagnosis and on-line control. The training data consists of 
parameterized descriptions of individual damage patterns and the Gaussian kernel 
coefficients formally computed for individual responses. 

 

 
Figure 4 Response curves for damage index distributions, for through-the-width damage 
patterns, along length, width, and depth of plate, respectively. 
 

 
Figure 5 Response curves for damage index distributions, for seeded damage patterns, 
along length, width, and depth of plate, respectively. 
 

  
Figure 6 Size of largest weight matrix. 

 
The performance of the trained network is measured by performing a regression 

analysis between the network response and the corresponding targets. The correlation 



coefficient between the outputs and targets is a measure of how well the variation in the 
output is explained by the targets; if this number is equal to 1, there is perfect correlation 
between targets and outputs. In the example shown (Fig. 7), the number is very close to 1, 
which indicates a good fit. The mean values of a relative square error for training data 
were obtained as 0.5% and 0.05% for through-the-width and seeded damage, 
respectively. The mean values of a relative error for cross-validation data were obtained 
as 6.2% and 4.7% for through-the-width and seeded damage, respectively. These values 
clearly indicate that both networks are capable of generalization. 

 

 
Figure 7 Quality of network training for through-the-width and seeded damage, 
respectively. 

 
The damage detection problem is again formulated as an optimization problem, 

posed in the form:  

 
( ) =

≤ ≤
iMinimize f ( g x , i 1,2,3 )

subject to l x u  (3) 
where the design variable x  describes the damage geometry and location. Now, the goal 
is to minimize the maximum relative absolute error in the Gaussian kernel constants; the 
objective function is defined as:  
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The superscripts " sim"  and " mea"  denote the simulated and measured values of 
the kernel constants. Note that, now, the objective function f  is a function of the 
Gaussian kernel constants ig , which, in turn, are related through the network weights to 
the design variable x . Six randomly selected examples for each damage condition 
(through-the-width and discrete) are shown in Table 5. The test set used to verify the 
model performance consists of a combination of data from the training set and 
new/unseen data not used for training but for which the desired response (the Gaussian 



kernel coefficients) is still known. Plots of the kernel function, actual and simulated, for 
through-the-width and seeded damage, are shown in Figs. 8 through 13. Note that, in the 
following figures, X corresponds to the length direction, Y, the width, and Z, the depth of 
the plate. 
 
Table 5 
Through-the-width and seeded delamination detections with trained neural networks. 

Through-the-width Seeded 
Case 

Actual GA/ANN Error 
(%) Actual GA/ANN Error 

(%) 
1 [0 9 11]a [0  9  11] 3.2 [4 3 1 6 4]b [4  3  1  6  4] 0.7 
2 [7 14 18] [7 14 18] 0.03 [1 13 0 16 4] [1 13 0 16 4] 1.1 
3 [2 10 12] [2 10 12] 0.4 [2  7  0 10 4] [2  7  0 10 4] 0.9 
4 [4 15 17] [4 15 17] 0.5 [6 10 0 14 2] [6 10 0 14 2] 0.9 
5 [6  9  12] [6  9  12] 0.2 [6  4  0  8  2] [6  4  0  8  2] 0.8 
6 [2 16 19] [2 16 19] 8.9 [6  5  0  8  2] [6  5  0  8  2] 0.8 

a, b The representations are explained in Fig. 2. 
 

 
Figure 8 Comparison of kernel functions, actual and as determined by GA/ANN for a 
through-the-width damage pattern, [4 15 17], in the XY plane. 



 
Figure 9 Comparison of kernel functions, actual and as determined by GA/ANN for a 
through-the-width damage pattern, [4 15 17], in the XZ plane. 
 

 
Figure 10 Comparison of kernel functions, actual and as determined by GA/ANN for a 
through-the-width damage pattern, [4 15 17], in the YZ plane. 
 



 
Figure 11 Comparison of kernel functions, actual and as determined by GA/ANN for a 
seeded damage pattern, [1 13 0 16 4], in the XY plane. 
 

 
Figure 12 Comparison of kernel functions, actual and as determined by GA/ANN for a 
seeded damage pattern, [1 13 0 16 4], in the XZ plane. 



 
Figure 13 Comparison of kernel functions, actual and as determined by GA/ANN for a 
seeded damage pattern, [1 13 0 16 4], in the YZ plane. 
 
Constitutive modeling of progressive damage 

To study the validity of the developed progressive damage model it is necessary 
to compare the simulation results with experimental data. The material used in the current 
study is M30/949 graphite/epoxy. The constituent properties of M30 carbon fibers and 
949 epoxy are given in Table 6. Using these values for constituent properties and a fiber 
volume fraction of 60 percent, effective composite properties are calculated using the 
micromechanical model. 
 
Table 6 
Material properties of the fiber and matrix. 

M30 fibers 

11E  (GPa) 22E  (GPa) 12G  (GPa) 23G  (GPa) 12ν  23ν  

276 13.8 20 5.52 0.25 0.25 

949 polymer matrix 
•

ε  (/sec) E  (GPa) ν  0D  (/sec) n  0Z  (MPa) 

9E-5 3.52 0.4 1.00E+06 0.8515 259.496 

1.9 3.52 0α  1α  q  1Z  (MPa) 

500 6.33 0.1289 0.15215 150.498 1131.371 
 
In the first example problem, a single unidirectional lamina of the fiber-reinforced 

composite material is subjected to a monotonically increasing, in-plane shear loading 
( 1 2 60, 0σ = σ = σ ≠ ) that produces a state of homogeneous deformation and stress. The 



constitutive model is solved incrementally with the applied shear loading imposed in a 
series of 10 equal load increments and the model predictions are compared with 
experimental data from Barbero and De Vivo (2001). Comparison of model and 
experimental shear results are shown in Figure 14. 

 

  
Figure 14 Stress-strain behavior of Cytec-Fiberite M30/949  carbon/epoxy: 
experimental and model results. 

  
The predicted stress-strain curve in the fiber direction is linear up to failure, as is 

routinely observed during materials testing. The transverse stress-strain curve shows 
nonlinearity due to the fact the material is much weaker in the transverse direction than 
the fiber direction causing matrix cracking in planes perpendicular to the transverse 
direction. A close examination of the predicted secant stiffness, shown in Figure 15, 
reveals that damage takes place in all three modes of loading; however, the rate of 
degradation of the transverse stiffness and the in-plane shear stiffness is orders of 
magnitude larger than the rate of growth of damage in the fiber direction. The in-plane 
shear stress-strain curve exhibits a pronounced nonlinearity due to this accelerated 
damage growth. 

The second problem involves a simply-supported, square, symmetric, cross-ply 
laminate [0/90]s subjected to a uniform pressure. The laminate has a length to thickness 
ratio of 10. The pressure is applied over a series of 10 uniform load increments, resulting 
in a maximum load intensity of 19.427 MPa. The constitutive model is solved 
incrementally and the resulting load deflection response is compared with the solution 
derived by Robbins Jr. et al (2004). Figure 16 illustrates the nonlinear relationship 
between the transverse deflection of the plate center and the transverse load intensity 
caused by the accumulation of distributed microscopic damage. It is observed that the 
center deflection reaches 10% of its overall thickness without significant nonlinearity due 
to damage accumulation. However, by the time the center deflection reaches 20% of its 
overall thickness, a noticeable amount of damage has accumulated and at the peak value 



of the pressure, local failure of the matrix is observed at a few points. While the overall 
load deflection response of the laminate does not exhibit a pronounced nonlinearity, 
many local points experience appreciable damage accumulation and exhibit severely 
nonlinear behavior, even complete failure in some cases. The response shown in Figure 
16 is a gross behavior produced by the sum of all the material points in the laminate. 

  
 Figure 15 Stiffness degradation of M30/949  carbon/epoxy: experimental  
 and model results. 
 

  
 Figure 16 Load-deflection behavior of  a simply supported, square, symmetric  
 cross ply laminate subjected to a uniform pressure. 

 



Diagnosis and prognosis 
In prediction the goal is to approximate the next sample as a nonlinear 

combination of past input samples, given by the size of the tap delay line. The desired 
signal is the input advanced by 0n  samples. The case when =0n 1  is called single-step 
prediction. Multi-step prediction ( >0n 1 ) is the same, except the task becomes 
increasingly more difficult for larger 0n . Prediction is widely applied in forecasting and 
modeling. The present research is concerned with forecasting damage. The forecasting 
problem may be simply formulated as follows: The damage distribution in the structure is 
known up to the present time n . The objective is to determine what the next damage 
state, ( + )D n 1 , of the time series is going to be. The idea is that if a system can be 
trained to predict the former values (damage distribution states) of the time series (that is, 
if the time series for state <k n  is fed to the system and the request is to predict 
state +k 1), then the system will also accurately predict state +n 1 . Figure 17 shows the 
block diagram to implement single-step prediction. The input is delayed by one 
sample/state before it is fed to the network. The desired output is the current state of the 
input ( )D n . The input of the network is therefore delayed one sample with respect to the 
desired response. 

   
Figure 17 Block diagram to implement 
single-step prediction. 

Numerical results are presented for progressive damage of an angle-ply, (45/-
45/45), simply-supported plate subjected to a uniform load of 0.75 MPa, constant in time. 
The length and width of the laminate are 0.25m. The thickness of each ply is 0.6667mm, 
giving a total laminate thickness of h = 2mm and a length to thickness ratio of 125. The 
material used in the current study is M30/949 graphite/epoxy. The constituent properties 
of M30 carbon fibers and 949 epoxy are given in Table 6. Using these values for 
constituent properties and a fiber volume fraction of 60 percent, the damage evolution 
model was then applied to generate the values of stiffness reduction in the matrix at each 
grid point in the model area. These data were then transformed to time series of stiffness 
reductions at the different points in the model area that were identified with the Time 
Delay Neural Network (TDNN) based agents. 

Representative grid points for the location of the TDNN-based agents were 
identified in the numerical model area and the time series of stiffness reductions at these 
points were prepared. In the first set of experiments the TDNN -based agent at each 
selected grid point received its input from present and previous values of the stiffness 
reductions of the nearest surrounding agents, which in turn could be associated with 
certain grid points. The agents then predicted the corresponding values of the variable at 
that point for the next time step. This also meant that stiffness reductions at the present 
and previous time steps of each selected grid point were passed as inputs to the TDNN 
agents of the nearest grid points to predict the stiffness reductions at the next time step at 



those points. Typical verification results of this investigation are shown in Figs. 18 – 20 
for one grid point in the model area. The size of the tap delay line is the variable that 
controls the size of the model, so it has to be experimentally determined. Larger models 
normally work better, but this depends on the type of data. For instance, larger models do 
not improve performance when the data (damage progression) is chaotic. Larger models 
simply utilize more information from the past to establish the value at the next time step.  

(a) Delay = 0.0012 s (b) Delay = 0.0044 s 

(c) Delay = 0.0064 s (d) Delay = 0.012 s 
Figure 18 Damage (percentage reduction in matrix stiffness) evolution in the bottom 
layer of a (45/-45/45) simply-supported plate loaded by uniform tractions of 0.75MPa. 



(a) Delay = 0.0012 s (b) Delay = 0.0044 s 

(c) Delay = 0.0044 s (d) Delay = 0.0064 s 
Figure 19 Damage (percentage reduction in matrix stiffness) evolution in the middle 
layer of a (45/-45/45) simply-supported plate loaded by uniform tractions of 0.75MPa. 



(a) Delay = 0.0012 s (b) Delay = 0.0028 s 

(c) Delay = 0.0036 s (d) Delay = 0.0044 s 
Figure 20 Damage (percentage reduction in matrix stiffness) evolution in the top layer 
of a (45/-45/45) simply-supported plate loaded by uniform tractions of 0.75MPa. 
 
But if the time series changes rapidly and it is aperiodic, this is of no help. Experimenting 
with the size of the delay line one can immediately see that this is true (Fig. 21). 
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Figure 21 Influence of the delay line size on the accuracy of simulation. 
 
A second set of experiments was performed in which multistep prediction (Fig. 

22) was attempted by steadily increasing the lag between the desired response and the 
input. The accuracy drops rapidly for multistep prediction as may be seen in Fig. 23. 

In general, the results of these two investigations show that agents constructed 
from TDNNs may be used as tools in the simulation of progressive damage in composite 
laminates effectively. But the conclusion is clearly highly restricted, since the 
experiments are specific to time delay neural networks. The next set of numerical 
experiments use agents composed exclusively of recurrent neural networks as non-linear 
dynamic system models to encapsulate progressive damage and to reproduce the 
temporal sequence of events observed in a model area. 
 
 
 
 



(a) Delay = 0.0012 s; Number of time 
steps predicted = 11 

(b) Delay = 0.0012 s; Number of time 
steps predicted = 16 

(c) Delay = 0.0012 s; Number of time 
steps predicted = 30 

(d) Delay = 0.0064 s; Number of time 
steps predicted = 2 

Figure 22 Multistep predictions. 
 
 



 
Figure 23 Effect of multistep prediction on accuracy of simulation. 
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As a first step, a somewhat modest experiment is undertaken. The goal is to 

diagnose the condition of a structure, described in terms of stiffness reduction. 
Diagnosing the structural degradation over time requires a physical inventory of the 
system response over the corresponding period. Such data may be collected as 
measurements of system response taken at a testing site or through a numerical 
simulation if a reliable model of the degradation process exists. The first example used in 
the verification of the response surface approach involves a simply-supported cross-ply 
(0/90/0) plate (Table 7) subjected to a variety of loading conditions. In practice, if the 
system responses under the more typically encountered load conditions are used to train 
the network, then field measurements of the system response would be sufficient to 
diagnose the health of the structure. 
 
Table 7. 
Plate dimensions and material specifications. 

Length 0.25m 
Width 0.25m 

Ply thickness 0.6667mm 
Total laminate thickness 2mm 

Length/thickness 125 
Material M30/949 graphite/epoxy 

Fiber volume fraction 60% 
 
The previously discussed macro-micro finite element analysis program is used to 

generate sample data for the inverse mapping between structural degradation and the 



transient response under a given load. The training data consists of a set of transient 
response curves and the corresponding damage evolution trajectories. The dynamic 
response curves correspond to a variety of excitations ranging in magnitude from 0.3 to 
0.75 MPa, in behavior, from a constant function, through step, ramp, impulse, and sine 
functions, to a single cycle sine function.  

In operation, the network should return an approximation of the degradation 
process when presented with some transient response curve at the input. The task is one 
of diagnosis, and a locally-recurrent architecture (Fig. 24) shows itself adequate to this 
type of task. Ideally, the neural diagnostic tool should generalize, that is, it should be able 
to reconstruct the trajectory of the damage progression when presented a transient 
response curve which the network has never seen before. Traditional knowledge from 
data modeling and recent developments in learning theory (Vapnik, 1995) clearly indicate 
that after a critical point the learning algorithm can over-fit the training data, resulting in 
poor performance on data not used in training. The current framework circumvents this 
problem by early stopping, or stopping with cross-validation – 10% of the training data is 
set aside for measuring training progress and at regular intervals (i.e., 5 to 10 iterations), 
the network performance with the prevailing weights is tested against this data, called the 
cross-validation set; training is stopped at the point of maximum generalization, that is, 
when the error in the cross-validation set starts to increase (Fig. 1). The mean value of a 
relative error for cross-validation data is obtained as 2.1%. Such a low value clearly 
indicates that the network is capable of generalization. The test set used to verify the 
model performance consists of a combination of data from the training set and 
new/unseen data not used for training but for which the desired response is still known. 
Figure 25 shows a transient response curve used to test the network post-training and the 
corresponding damage progression trajectory, actual and simulated. Results of this 
simulation show that a relatively small network (7 neurons in the hidden layer) represents 
the mapping satisfactorily. 
  

   
Figure 24 Locally-recurrent architecture. 

 
The performance of the trained network is measured by performing a regression 

analysis between the network response and the corresponding targets. The correlation 
coefficient between the outputs and targets is a measure of how well the variation in the 
output is explained by the targets; if this number is equal to 1, there is perfect correlation 
between targets and outputs. In the example shown (Fig. 26), the number is very close to 



1, which indicates a good fit. The mean value of a relative square error for training data is 
obtained as 12%. 
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Figure 25 (a) Transient response of a (0/90/0) simply-supported plate loaded by 
uniform tractions of 0.675MPa, (b) Comparison of neural-network-simulated damage 
evolution with finite element model results. 
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Figure 26 Quality of network training for first recurrent architecture. 

 
The next task given to the network is to learn to predict the progression of 

damage, given a fragment of the damage progression stream. For this simulation a 
network similar to that in the first simulation is used, except that (1) intralayer 
connections in the input layers are eliminated, and (2) the basic network used in the 
previous simulation is expanded; the input and hidden layers contain 17 and 21 nodes, 
respectively. The training regimen involves presenting each damage state, one at a time, 
in sequence. The task for the network is to predict the next input. The sequence wraps 



around, that the first state is presented after the last. The network is trained on 12000 
passes through a sequence. It is then tested on another sequence that obeys the same 
regularities as a fragment of the original, but with noise added to the data. The actual and 
predicted evolutions are shown in Fig. 27. It is obvious that the error builds with time and 
the ability to predict correctly is quite poor. 

 

 
Figure 27 Comparison of neural prognostics of damage evolution with 
finite element model results. 

 
A network should be able to work with incomplete and noisy input data. This 

feature seems to be particularly useful in the present application, as incomplete and noisy 
data are the rule rather than the exception in practical field tests involving structural 
systems. A training strategy for handling noise in data is devised as follows: To create a 
network that can handle noisy input data it is best to train the network on both ideal and 
noisy data. To do this, the network is first trained on ideal data for a maximum of 6000 
epochs or until it has a low sum-squared error. Then, to obtain a network not sensitive to 
noise, the network is trained on two ideal copies and two noisy copies of the data. The 
noisy data has noise of mean 10% and 20% added to it. This forces the network to learn 
how to properly identify noisy data, while maintaining its ability to respond well to noise-
free data. To train with noise, the maximum number of epochs is reduced to a small 
fraction of the number of epochs used during the previous stage of training and the error 
goal is increased, reflecting that higher error is expected given the nature of the sequence 
(more data sequences, including some with noise). The choice of number of epochs is 
determined heuristically. Once the network is trained with noise, it is again trained on just 
ideal data to ensure that it responds perfectly when presented with ideal data. The training 
strategy is summarized in Fig. 28. 

The reliability of the neural network sequence reproduction system is measured 
by testing the network with fragments of the damage progression trajectory with varying 
quantities of noise. Figure 29 compares the network prognostics with the actual 



degradation when noise of mean 5% is added to the fragment presented to the network. It 
is obvious that training the network on noisy input data greatly reduces its errors when it  
  

   
Figure 28 A training strategy for handling noise 
in data. 

  

  
Figure 29 Comparison of neural prognostics of damage evolution with 
finite element model results. 

 
has to work with noisy data. If a higher accuracy is needed, the network can be trained 
for a longer time or retrained after decreasing network resolution or increasing the size of 



the network. As a final comment, it is indicated that the reliability of network 
approximations could be further heightened to handle higher levels of noise by training it 
on input data with greater amounts of noise. 

Numerical results are also presented for progressive damage of angle-ply, (30/-
60/30), (45/-45/45), plates subjected to a uniform load of 0.75 MPa, constant in time. The 
time scale over which damage effects first make their appearance in the cross-ply 
laminate is shorter relative to the angle-ply laminates. The system response is studied 
over a period of 0.88 ms and the plot of the temporal evolution of the damage parameter 
(Fig. 29) reveals a dramatic perturbation in the stiffness of the matrix in the top ply post 
the 0.5-ms mark. An obvious factor that contributes to this dramatic perturbation is the 
heightened stiffness of the cross-ply laminate. This is in contrast to the response of the 
two angle-ply laminates (Figs. 30 and 31) in which most of the damage is nucleated 
within 50 ms from the time when the structure is loaded. The damage evolution stabilizes 
i.e., the maximum perturbation does not seem to increase appreciably over the remaining 
time post the 50-ms mark, but the region of damage spreads and eventually the clusters 
may coalesce to form larger clusters thereby raising the specter of complete failure. The 
system response is studied over a broader temporal scale (100 ms) relative to the cross-
ply laminate. For this reason, the angle-ply damage trajectories are easier to learn and 
predict and the network could be trained with fewer neurons (9) in its hidden layer with 
no significant increase in the error of the network approximations. Figures 30 and 31 
furnish proof of same. 

 

 
(a) 

 
(b) 

Figure 30 Comparison of neural prognostics of damage evolution in a (30/-60/30) plate 
with FEM results when the network has (a) not been trained to handle noisy data, (b) 
been trained to handle noisy data. 



 
(a) 

 
(b) 

Figure 31 Comparison of neural prognostics of damage evolution in a (45/-45/45) plate 
with FEM results when the network has (a) not been trained to handle noisy data, (b) 
been trained to handle noisy data. 

 
One question which might be asked is whether the memory capacity of the 

response surface topology employed here can supply reliable diagnostics when it 
encounters inputs beyond its adaptive scope or outside its range of ‘experience’. Two 
input sequences (Figs. 32 (a) and 33 (a)) are devised which are intended to address these 
scenarios. These are the transient responses to excitations, constant with time, of 0.77 
MPa and 0.8 MPa, respectively. The corresponding degradation signals are shown in 
Figs. 32 (b) and 33 (b). The mean values of the relative square error estimates are 2.3% 
and 2.5%, respectively. This global error does not tell the whole story, however. The 
error signals for this testing phase are shown in Fig. 34. It is obvious that the error 
oscillates markedly; at some points in time, the diagnosis is correct and error is low, 
while at other points in time, the ability to diagnose correctly is quite poor. More 
precisely, error tends to be high when the network encounters outliers, points which are 
abnormally far from the response surface domain. The farthest outliers encountered by 
the model when it is presented the input sequences shown in Figs. 32 (a) and 33 (a) are, 
respectively, approximately 11% and 32% greater relative to the upper bound of the 
domain. To verify the accuracy of the response model, the response surface solutions are 
compared with direct FE analysis solutions at these locations in the input space. The 
relative squared errors are, respectively, 0.1% and 10%. Errors stemming from data or 
behavior outside the response surface space (area encircled in blue in Fig. 34) should not 
be confused with diagnostic errors which might result from data within the mapping 
space (area encircled in green in Fig. 34). The latter are associated with the learning 
process and the accuracy of the mapping can be refined through longer training times 
and/or increased processing and memory requirements. This simulation demonstrates that 
to improve diagnostics from a quantitative standpoint, it is necessary to develop a 
response surface topology that is comprehensive enough to reflect as complete a scope of 
the load conditions as is realistically possible. 
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Figure 32 (a) Transient response of a (0/90/0) simply-supported plate loaded by 
uniform tractions of 0.77 MPa, (b) Comparison of ANN-simulated damage evolution 
with FE analysis results. 
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Figure 33 (a) Transient response of a (0/90/0) simply-supported plate loaded by 
uniform tractions of 0.8 MPa, (b) Comparison of ANN-simulated damage evolution 
with FE analysis results. 
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Figure 34 Graph of error relative to FE analysis solution in temporal association task. 
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